Click-Through Rate Prediction Combining Mutual Information Feature Weighting and Feature Interaction
نویسندگان
چکیده
منابع مشابه
Mutual Information-based multi-label feature selection using interaction information
Multi-label feature selection is regarded as one of the most promising techniques that can be used to maximize the efficacy and efficiency of multi-label classification. However, because multi-label feature selection algorithms must consider multiple labels concurrently, the task is more difficult than singlelabel feature selection tasks. In this paper, we propose the Mutual Information-based m...
متن کاملEnsemble of Collaborative Filtering and Feature Engineered Models for Click Through Rate Prediction
The challenge for Track 2 of the KDD Cup 2012 competition was to predict the click-through rate (CTR) of web advertisements given information about the ad, the query and the user. Our solution comprised an ensemble of models, combined using an artificial neural network. We built collaborative filters, probability models, and feature engineered models to predict CTRs. In addition, we developed a...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملQuadratic Mutual Information Feature Selection
We propose a novel feature selection method based on quadratic mutual information which has its roots in Cauchy–Schwarz divergence and Renyi entropy. The method uses the direct estimation of quadratic mutual information from data samples using Gaussian kernel functions, and can detect second order non-linear relations. Its main advantages are: (i) unified analysis of discrete and continuous dat...
متن کاملSpeeding Up Feature Subset Selection Through Mutual Information Relevance Filtering
A relevance filter is proposed which removes features based on the mutual information between class labels and features. It is proven that both feature independence and class conditional feature independence are required for the filter to be statistically optimal. This could be shown by establishing a relationship with the conditional relative entropy framework for feature selection. Removing f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3034630